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1. 

A fairly accurate and representative computer model is required to predict the dynamic
characteristics of the structure under study. The eigenvalue problems encountered in
dynamics are of the type

[K]{u}=v2[M]{u}, (1)

where [M] and [K] are mass and stiffness matrices of size (N×N), {u} is the eigenvector
and v is the corresponding natural frequency. Theoretically, equation (1) gives rise to N
eigenpairs. Luckily, in all engineering problems the meaningful eigenpairs needed are very
small in comparison with N. Significant discrepancies are often found when validating
these models by comparing the numerical predictions with experimental values. These
variations can be attributed to the analytical model because it is difficult to incorporate
complex mechanical joints, accurate damping characteristics of the typical engineering
structures into the finite element model. In such cases update strategies must be applied
to obtain modified models. Model updating is concerned with globally tuning the elements
of the spatial matrices in the light of the measured modal data. Preservation of the original
banded characteristics in the updated matrices considerably reduces the computational
requirements when solving eigenvalue problems of large size. The updated model will be
applied more confidently to predict the internal stress levels and sensitivity to further
design changes.

Baruch and Bar Itzhack [1] developed an optimal update for the stiffness matrix of a
structure by using orthogonalized measured modes. Berman and Nagy [2] generated a
model whose modes agree exactly with those used in identification, but improved analytical
mass and stiffness matrices became dense and the elements were dramatically altered. Kabe
[3] presented a stiffness matrix adjustment procedure that preserves the physical
connectivity of the original model in the updated stiffness matrix. It is computationally
involved because a large indefinite auxiliary linear system of equations must be solved.
Smith and Beattie [4] considered quasi-Newton methods for stiffness updating which
preserves the structural connectivity by overcoming the problems associated with the Kabe
method.

In the present study, eigendata obtained from the finite element model is correlated with
and corrected to the values of experimental modal analysis. Incomplete mode shape data
obtained by conducting experimental modal analysis at 10 locations on a cantilever plate
with holes is expanded to a full measured vector. To satisfy the orthogonality characteristic
of true normal modes, the first four measured modes were made orthonormal with respect
to the analytical mass matrix. The model updating procedure given by Smith and Beattie
[4] is applied to improve the stiffness matrices of different problems with different types
of elements.
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2.  

2.1. Full mode computation
The measured deflection data should be corrected to make them orthogonal with respect

to the mass matrix because modal updating requires mass-orthonormalized modal vectors
of size consistent with analytical model co-ordinates. The subsets of modal displacements
for each mode can be related with analytical mass and stiffness matrices [6] to get the full
measured vector and it can be represented as

6$[K11] [K21]
[K12] [K22]%−v2

i $[M11] [M21]
[M12] [M22]%76{f1i}

{f2i}7= {0}, (2)

where {f1i} is the measured part of the eigenvector while {f2i} is the unknown part; the
lower matrices represent the unknown co-ordinates. Rearranging the lower matrix
equation gives

{f2i}=−([K22]−v2
i [M22])−1([K21]−v2

i [M21]){fi1}. (3)

The full measured modal vector can be obtained after rearranging the measured vector
and expanded vector to the analytical model co-ordinates.

2.2. Model updating procedure
The modification procedure [4] minimizes changes to the analytical matrices within the

constraints of the dynamic equations governing the vibration characteristics of the system
and gives improved matrices which exactly predict the measured modal data. Using the
spatial matrices [KA ] and [MA ] and modal data [v2] and [f], generalization to a
multiple-secant algorithm produces an optimal update identification method which
minimizes

s
N

i, j=1

(Kij −KA
ij )2

KA
ii KA

j j
(4)

subjected to Kf=Mfv2, K=KT and sparse ([K])= sparse ([KA ]). The cost functional
with a diagonal weighting matrix is

>[D]−1(K−KA ) [D]−1>2
F ,

where

[D]=diag (di )=diag zKA
ii .

T 1

Computational requirements

Multiplications Memory

(a) Eigenvalue Nb2/2+ c [3Nbp+ 5
2Np2 + 1

6p
3]+Nbp 2Nb+4Np

problem
(b) Mode expansion p[(N− n)3/6+2N(N− n)] 2N2 +2(N− n)2 +2n(N− n)
(c) Model updating Np[4N2(p+2)]+4N2(p+1) 2N2 +2(N− n)2 +2n(N− n)

+ (N− n)+Np
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T 2

Example results ((a), (b) and (c) refer to Table 1)

(a) 0·5×106 0·8 Mb
(b) 6·5×106 3·0 Mb
(c) 1000×106 2·0 Mb

N=220, n=10, b=60, p=4, c=8 (no. of iterations
with a PC 486 machine)

Lagrangian multipliers incorporate the constraints into an above extended cost function.
Minimization of the Lagrangian function produces a system of linear equations to solve
for the Lagrange multipliers. The final update equation can be obtained by adding the
error matrix elements, obtained by using the Lagrangian constants, to the original stiffness
matrix elements and it is given by

Kij =KA
ij + di dj {[P]i [D] [f]i {gi}j +[[P]j [D] [f]j {gj}]i}, for i, j=1, . . . , N, (5)

where [f]=measured modal matrix, [g]=matrix of Lagrangian constants, [P]i =diagonal
matrix of ones and zeros which masks a vector with the scarcity pattern of the ith row
of [KA ].

An iterative conjugate gradient method was used to solve the auxiliary problem
(Np, Np). A reduced storage solution can be used by taking advantage of repetitive
substructure patterns without storing the coefficient matrix explicitly. A maximum of Np
iterations are necessary for better convergence of the solution.

2.3. Computational requirements
Computational requirements are listed in Table 1, numerical examples are given in

Table 2.

3. 

3.1. Rectangular plate with holes using a 3-D plate element
A plate of size 300 mm×150 mm×3 mm with circular and rectangular holes was

considered to allow application of the updating procedure. It was descretized (Figure 1)
with 42 nodes and 54 elements using triangular 3-D plate elements with 6 degrees of
freedom per node. A finite element model of 222 active degrees of freedom with a
maximum band width of 60 was used to get the first four natural frequencies using a

Figure 1. Finite element discretization of plate.
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T 3

Comparison of natural frequencies of the plate (triangular plate element)

Mode FEM (Hz) Experimental (Hz) Improved FEM (Hz)

1 25·02 23·72 23·68
2 109·32 101·15 101·14
3 157·15 151·45 150·92
4 358·32 334·89 333·98

simultaneous iteration [7] scheme and the values are shown in Table 3. The first four
eigenvalues converged with 8 iterations.

3.1.1. Modal test. The testing arrangement including test specimen and instrumentation
used for modal analysis is as given in Figure 2. Frequency response functions (FRF,
acceleration/force) were captured at 12 locations on the boundary of the plate, keeping
the accelerometer fixed at the free end and hitting at all the points using an impact hammer.
This resulted in one point FRF and 11 transfer FRFs. By using a multi degree of freedom
(MDOF) curve fit, based on a complex exponential least squares algorithm, modal
parameters were estimated from the driving FRF. The first four natural frequencies are
tabulated in Table 3. The full measured mode vector (222×1) was calculated using
equation (3) from the incomplete measured mode vector (10×1) for the first four
frequencies. The expanded modal vectors and eigenvectors obtained by eigenvalue analysis
were comparable.

3.1.2. Improved solution. The modified stiffness matrix is calculated using equation (5).
This improved stiffness matrix, having the same characteristic of the original stiffness
matrix (222×60), along with original mass matrix was used to obtain improved
eigenvalues using the simultaneous iteration scheme. The improved frequencies are listed
in Table 3.

Figure 2. Experimental set-up (rigid clamped–free boundaries).
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Figure 3. Finite element discretization of EOT crane.

3.2. EOT crane using 3-D beam elements
A one meter height EOT crane was analyzed with 3-D beam elements with 6 degree of

freedom (DOF)/node to test the applicability of the stiffness matrix modification
procedure. The structure was discretized with 61 nodes and 60 elements (Figure 3).
The active degrees of freedom were 354 and the maximum band width was 12. The
first 10 eigenvalues were obtained with 15 iterations and are listed in Table 4. A 10%
variation was assumed for the first four natural frequencies to get the corresponding
experimental values. The improved stiffness matrix elements using the first four modes
were obtained using equation (5). The improved natural frequencies are given in Table 4
for comparison. The identified four modes are in good agreement with the assumed
measured modes. The other frequencies were also slightly changed with the modification
process.

3.3. Rectangular plate with brick element
A cantilever mild steel plate of size 200 mm×100 mm×6 mm was modelled with 90

nodes and 32 elements. A 3-D brick element with 3 DOF/node was used for discretization.
An eigenvalue problem of size 240×42 is solved for 10 eigenvalues and orthonormalised
eigenvectors. A 5% variation in the first four natural frequencies was assumed to
approximate the measured values. These four eigenvalues and vectors were used along with
analytical stiffness and mass matrices to improve the finite element model using equation
(5). The eigensolution with improved stiffness matrix and original mass matrix produced

T 4

Comparison of natural frequencies (Hz) for EOT crane (beam element)

Mode no. FEM Expected values FEM improved

1 19·612 21·574 21·5051
2 31·353 34·488 34·5589
3 38·504 42·354 41·5073
4 56·240 61·864 61·8264
5 74·711 – 77·9431
6 157·167 – 157·89
7 169·86 – 171·956
8 239·148 – 238·878
9 239·676 – 240·4152

10 285·752 – 284·861
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T 5

Comparison of natural frequencies (Hz) of plate (brick element)

Mode no. FEM Expected FEM improved

1 318·785 350·663 352·53
2 1232·883 1356·171 1356·355
3 1810·623 1991·685 1991·692
4 1918·020 2109·822 2109·775
5 3901·184 – 3983·010
6 5127·128 – 5267·262
7 6549·826 – 6554·411
8 6693·076 – 6746·727
9 6791·341 – 6819·220

10 7128·748 – 7245·297

the first four natural frequencies which are in better agreement with the expected measured
values, as given in Table 5.

4. 

Analytical stiffness matrices of different problems are modified in the light of incomplete
modal data to reproduce the identified measured frequencies using different types of finite
elements: a triangular plate element with 6 DOF/node, a 3-D beam element and a brick
element. The original characteristics of the stiffness matrix are retained after modification.
Unidentified modes are also changed to some extent due to stiffness modification.

Incomplete modal vectors are expanded to full vectors, consistent with the finite element
degrees of freedom. Self-compatibility of these measured data is checked to satisfy the
orthogonal property of the true normal modes. The off diagonal elements showed an error
of 9% in the fourth mode. However this procedure will lead to convergence problems if
the measured data contains errors of substantial magnitude.
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